Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 12(1): 17543, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2077102

ABSTRACT

The isolation of infected individuals and quarantine of their contacts are usually employed to mitigate the transmission of SARS-CoV-2. Although 14-day isolation of infected individuals could effectively reduce the risk of subsequent transmission, it also substantially impacts the patient's psychological and emotional well-being. It is, therefore, vital to investigate how the isolation duration could be shortened when effective vaccines are available. Here, an individual-based modeling approach was employed to estimate the likelihood of secondary infections and the likelihood of an outbreak following the isolation of a primary case for a range of isolation periods. Our individual-based model integrated the viral loads and infectiousness profiles of vaccinated and unvaccinated infected individuals. The effects of waning vaccine-induced immunity against infection were also considered. By simulating the transmission of the SARS-CoV-2 Delta (B.1.617.2) variant in a community, we found that in the baseline scenario in which all individuals were unvaccinated and nonpharmaceutical interventions were not used, there was an approximately 3% chance that an unvaccinated individual would lead to at least one secondary infection after being isolated for 14 days, and a sustained chain of transmission could occur with a less than 1% chance. With the outbreak risk equivalent to that of the 14-day isolation in the baseline scenario, we found that the isolation duration could be shortened to 7.33 days (95% CI 6.68-7.98) if 75% of people in the community were fully vaccinated with the BNT162b2 vaccine within the last three months. In the best-case scenario in which all individuals in the community are fully vaccinated, isolation of Delta variant-infected individuals may no longer be necessary. However, to keep the outbreak risk lower than 1%, a booster vaccination may be necessary three months after full vaccination.


Subject(s)
COVID-19 , Coinfection , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Vaccination
2.
Trop Med Infect Dis ; 7(7)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911600

ABSTRACT

Thailand has experienced the most prominent COVID-19 outbreak in 2021, resulting in a new record for COVID-19 cases and deaths. To assess the influence of the COVID-19 outbreak on mortality, we estimated excess all-cause and pneumonia mortality in Thailand during the COVID-19 outbreak from April to October 2021. We used mortality from the previous 5 years to estimate the baseline number of deaths using generalized linear mixed models. The models were adjusted for seasonality and demographics. We found that, during the outbreak in 2021, there was a significant rise in excess fatalities, especially in the older age groups. The estimated cumulative excess death was 14.3% (95% CI: 8.6-18.8%) higher than the baseline. The results also showed that the excess deaths in males were higher than in females by approximately 26.3%. The excess deaths directly caused by the COVID-19 infections accounted for approximately 75.0% of the all-cause excess deaths. Furthermore, excess pneumonia deaths were also found to be 26.2% (95% CI: 4.8-46.0%) above baseline.

3.
Sci Rep ; 12(1): 2002, 2022 02 07.
Article in English | MEDLINE | ID: covidwho-1671636

ABSTRACT

Thailand was the first country reporting the first Coronavirus disease 2019 (COVID-19) infected individual outside mainland China. Here we delineated the course of the COVID-19 outbreak together with the timeline of the control measures and public health policies employed by the Thai government during the first wave of the COVID-19 outbreak in Thailand. Based on the comprehensive epidemiological data, we reconstructed the dynamics of COVID-19 transmission in Thailand using a stochastic modeling approach. Our stochastic model incorporated the effects of individual heterogeneity in infectiousness on disease transmission, which allows us to capture relevant features of superspreading events. We found that our model could accurately capture the transmission dynamics of the first COVID-19 epidemic wave in Thailand. The model predicted that at the end of the first wave, the number of cumulative confirmed cases was 3091 (95%CI: 2782-3400). We also estimated the time-varying reproduction number (Rt) during the first epidemic wave. We found that after implementing the nationwide interventions, the Rt in Thailand decreased from the peak value of 5.67 to a value below one in less than one month, indicating that the control measures employed by the Thai government during the first COVID-19 epidemic wave were effective. Finally, the effects of transmission heterogeneity and control measures on the likelihood of outbreak extinction were also investigated.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Epidemics/prevention & control , Models, Statistical , SARS-CoV-2 , Adult , COVID-19/prevention & control , COVID-19/virology , Communicable Disease Control/methods , Female , Humans , Male , Middle Aged , Stochastic Processes , Thailand/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL